If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10a^2+15=19a
We move all terms to the left:
-10a^2+15-(19a)=0
a = -10; b = -19; c = +15;
Δ = b2-4ac
Δ = -192-4·(-10)·15
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-31}{2*-10}=\frac{-12}{-20} =3/5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+31}{2*-10}=\frac{50}{-20} =-2+1/2 $
| (x-1/x-2)-(x-2/x-3)=(x-5/x-6) | | -6=9-x4+7 | | 1/6x^2-36=0 | | 5/x=30/6 | | 6+2(12-x)=4(x-1)-1.1 | | -4x-1+9x=3x+1 | | (12x-38)=(7x+32) | | 12-8=x+3 | | 65=b5 | | 2/9=3/2(4/9x-4) | | 10+r^2=110 | | 10+x^2=110 | | 4v^2+19v+14=0 | | x+7=12+18 | | 8b+3-106=2(b-2)+3 | | 9+8=-17(x-2)+11+28x | | 1/3x^2-16=0 | | 9x^2−54x+88=0 | | -30+-3y=18 | | (158+4x)+(x^2+32)=180 | | -11-6=a | | 10n+20=6n | | (158+4x)+(x^2-32)=180 | | 9x2−54x+88=0 | | 180=13x+1+9x+3 | | -y/12=24 | | (158-4x)+(x^2-32)=180 | | 9+8=-17(x-2)+11=28x | | w+4/3+1/3=-1/6(w-7/2) | | (158-4x)+(x^2+32)=180 | | 102-8f=38 | | (9x-3)(5x+3)=0 |